Referenzen

Referenz-Kunden

Wir folgen unserer Vision, Implantat-Technologie aufs nächste Level zu heben, indem wir unseren Kunden innovative technologische Lösungen anbieten.

Führende Forscher und Unternehmen rund um den globus vertrauen auf unsere Produkte, die wir gemäß höchsten Qualitätsstandards herstellen. Es erfüllt uns daher mit Stolz, sowohl die Spitzenforschung als auch die Entwicklung von hoch-effizienten neuen Therapien unterstützen zu dürfen.

Papers & Veröffentlichungen unter Beteiligung von CorTec Produkten

Unsere Produkte sind weltweit an Forschungs- und Entwicklungsprojekten beteiligt. Folgend eine Anzahl an Papers die von unseren Kunden hierzu veröffentlicht wurden*.
Folgen Sie den Links, um die vollständigen Artikel zu lesen.

Mehr Literatur zu unseren Produkten und Anwendungsmöglichkeiten finden Sie hier.

*Sollten Sie ein Paper kennen, das hier nicht gelistet ist, freuen wir uns über eine Nachricht hierzu an info@cortec-neuro.com

Implanted Nerve Electrical Stimulation allows to Selectively Restore Hand and Forearm Movements in Patients with a Complete Tetraplegia.

Tigra, Wafa, et al.; bioRxiv (2019): 534362.

 

Sensory pudendal nerve stimulation increases bladder capacity through sympathetic mechanisms in cyclophosphamide‐induced cystitis rats.

Gonzalez, Gril; Neurourology and Urodynamics 38.1 (2019): 135-143.

 

Optogenetic activation of fiber-specific compound action potentials in the mouse vagus nerve.

Téa Tsaava, Adam M. Kressel et al.; 9th International IEEE EMBS Conference on Neural Engineering, San Francisco, CA, USA, March 20 – 23 , 2019
 

 

Optimization of the electrode drive pattern for imaging fascicular compound action potentials in peripheral nerve with fast neural electrical impedance tomography (EIT).

Enrico Ravagli et al.; Physiological Measurement 2019.

 

Feasibility of kilohertz frequency alternating current neuromodulation of carotid sinus nerve activity in the pig.

Cathrine T. Fjordbakk et al.; Scientific Reports 9, 18136 (2019).

 

An impedance matching algorithm for common-mode interference removal in vagus nerve recordings.

Todd J. Levy et al.; Journal of Neuroscience Methods, 330, 2019.

 

Pancreatic nerve electrostimulation inhibits recent-onset autoimmune diabetes.

Mélanie Guyot et al.; Nature Biotechnology 2019.

 

Exploring selective neural electrical stimulation for upper limb functions restoration.

W. Tigra, David Guiraud, David Andreu, Bertrand Coulet, Anthony Gelis, Charles Fattal, Pawel Maciejasz, Chloé Picq, Olivier Rossel, Jacques Teissier, Christine Azevedo Coste; European Journalf of Translational Myology 2016 26(2), 161-164.

 

Apical splenic nerve electrical stimulation discloses an anti-inflammatory pathway relying on adrenergic and nicotinic receptors in myeloid cells.

Guyot, Mélanie et al.; Brain, Behaviour, and Immunity 8 (2019) 238-246.

 

Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity.

Masi, Emiliy Battinelli et al.; Bioelectronic Medicine (2019) 5:9.

 

Miniature electroparticle-cuff for wireless peripheral neuromodulation.

Hernandez-Reynoso, Ana G. et al.; J. Neural Eng. 2019 16 046002.

 

A neural circuit for gut-induced reward.

Han, Wenfei, et al.; Cell 175.3 (2018): 665-678.

 

A wrappable microwire electrode for awake, chronic interfacing with small diameter autonomic peripheral nerves.

Falcone, Jessica D., et al.; bioRxiv(2018): 402925.

 

Classification of naturally evoked compound action potentials in peripheral nerve spatiotemporal recordings.

Koh, Ryan GL, Adrian I. Nachman, and Jose Zariffa.; bioRxiv(2018): 469874.

 

Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

Zanos, Theodorsos P., et al; PNAS, vol. 115, no. 21, E4851 (2018).

 

Standardization of methods to record Vagus nerve activity in mice.

Silverman, Harold A., et al.; Bioelectronic Medicine 4.1 (2018): 3.

 

A Multi-Sensor and Parallel Processing SoC for Miniaturized Medical Instrumentation

Schoenle, P., et al.; in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 2076-2087, July 2018.

 

Stimulation of the sensory pudendal nerve increases bladder capacity in the rat. 

Hokanson, James A., et al.; American Journal of Physiology-Renal Physiology 314.4 (2017): F543-F550.

 

Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model.

Somann, Jesse Paul, et al;  Journal of neural engineering (2017).

 

A multi-sensor and parallel processing SoC for wearable and implantable telemetry systems.

Schoenle, P., et al.; ESSCIRC 2017-43rd IEEE European Solid State Circuits Conference. IEEE, 2017.

 

Modulation of Calcitonin, Parathyroid Hormone, and Thyroid Hormone Secretion by Electrical Stimulation of Sympathetic and Parasympathetic Nerves in Anesthetized Rats.

Hotta, Harumi, et al.; Frontiers in neuroscience 11 (2017): 375.

 

The effects of neuromodulation in a novel obese-prone rat model of detrusor underactivity.

Gonzalez, Eric J., and Warren M. Grill; American Journal of Physiology-Renal Physiology (2017): F815-F825.

 

Bioelectronic modulation of carotid sinus nerve activity in the rat: a potential therapeutic approach for type 2 diabetes.

Sacramento, Joana F., et al.; Diabetologia (2017): 1-11.

 

High-frequency electrical modulation of the superior ovarian nerve as a treatment of polycystic ovary syndrome in the rat.

Pikov, Victor X., Arun Sridhar, and Hernan E. Dr Lara; Frontiers in Physiology 9 (2018): 459.

 

Stimulation of the Pelvic Nerve Increases Bladder Capacity in the Prostaglandin E2 Rat Model of Overactive Bladder.

Langdale, Christopher L., et al.; American Journal of Physiology-Renal Physiology (2017): ajprenal-00116.

 

Spatial and activity-dependent catecholamine release in rat adrenal medulla under native neuronal stimulation.

Kyle Wolf, Georgy Zarkua, Shyue‐An Chan, Arun Sridhar, Corey Smith; Physiological Reports Vol. 4, Iss. 27 (2016 ), 1-13.

 

Phasic activation of the external urethral sphincter increases voiding efficiency in the rat and the cat.

Christopher L. Langsdale, Warren M. Grill; Experimental Neurology 285 (Pt B) 2016 Nov, 173-181.

 

Cytokine-specific Neurograms In the Sensory Nerve.

Benjamin E. Steinberg, Harold A Silverman, Sergio Robbiati, Manoj K Gunasekaran, Téa Tsaava, Emily Battinelli, Andrew Stiegler, Chad E Bouton, Sangeeta S Chavan, Kevin J Tracey, Patricio T Huerta ; Bioelectronic Medicine 2016, 7-17.

 

Conductive hydrogel electrodes for delivery of long-term high frequency pulses.

Staples, Naomi A., et al.; Frontiers in Neuroscience 11 (2017): 748.

 

A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.

Lissandrello, C. A., et al.; Journal of neural engineering 14.3 (2017): 036006.

Signal quality of simultaneously recorded endovascular, subdural and epidural signals are comparable.

John, Sam E. et al.; Scientific Reports (2018) 8:8427.

 

A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface.

Romanelli, Pantaleo et al.; J Neurosurg May 11, 2018.

 

In vivo impedance characterization of cortical recording electrodes shows dependence on electrode location and size.

John SE, et al.; IEEE Trans Biomed Eng. 2018 Jul 10.

 

Characterization of Hand Clenching in Human Sensorimotor Cortex Using High-, and Ultra-High Frequency Band Modulations of Electrocorticogram.

Jiang, Tianxiao, et al.; Frontiers in Neuroscience 12 (2018): 110.

 

Mapping the fine structure of cortical activity with different micro ECoG electrode array geometries.

Xi Wang et al 2017; J. Neural Eng. 14 056004.

 

Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

Thomas J Oxley,  Nicholas L Opie, Sam E John, Gil S Rind, Stephen M Ronayne, Tracey L Wheeler, Jack W Judy et al.; Nature Biology 34 , 320–327.

 

In vitro assessment of long-term reliability of low-cost μΕCoG arrays.

Palopoli-Trojani, Kay, et al.; Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE, 2016.

 

A critical review of cell culture strategies for modelling intracortical brain implant material reactions.

Gilmour, Aaron D., et al.; Biomaterials 91 (2016): 23-43.

Sales Kontakt

Sie haben Fragen zu unseren Produkten und ihren unterschiedlichen Produkt-Konfigurationen?

Kontaktieren Sie uns:
+49 (0)761 70 888 222

Lösungen

Sie interessieren sich für unsere Produkte?

Schauen Sie sich im Bereich ‘Lösungen’ genauer um und informieren Sie sich über unsere Produkte und ihre Spezifikationen.

Qualität

Mit unserem Qualitätsmanagement-System erfüllen wir die höchsten Anforderungen der geltenden Standards.

CorTec ist DIN EN ISO 13485 zertifiziert und verfügt über hochklassifizierte Reinräume.

Kontakt

Haben Sie Fragen zu unserem Unternehmen oder unserer Technologie? Wir freuen uns auf Ihre Rückmeldung.

Lösungen

Unsere Produkte bieten Lösungen für Ihre individuelle Herausforderung.

Schauen Sie sich den Abschnitt “Lösungen” genauer an und informieren Sie sich über unsere Produkte für die vorklinische Forschung, den industriellen und klinischen Einsatz sowie deren Spezifikationen.

CorTec Stories

Sie möchten uns noch besser kennen lernen? Werfen Sie einen Blick in eunseren Stroies-Bereich und entdecken Sie CorTec durch Technologie, User-Stories und mehr.